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Abstract
Activity recognition enables many user-facing smartphone
applications, but it may suffer from misclassifications
when trained models attempt to classify previously-unseen
real-world behavior. Our system mitigates this problem by
first identifying spurious classifications and then
automatically pruning a decision tree model to remove
labels that tend to produce wrong inferences, resulting in
a 10% classification improvement based on our data set.
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ACM Classification Keywords
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Introduction
Activity recognition is the process of determining user
physical behavior from sensor data [1, 5, 6, 4, 2]. In our
work we are especially interested on recognizing human
modes of transportation (comprising driving, walking,
running, bicycling, and idling) using only a smartphone’s
accelerometer due to its low power consumption.

These physical activities are relevant because they enable
a variety of user-facing smartphone applications; for
example, recognizing that the user is driving can trigger a
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reduced-distraction user interface, and recognizing long
periods of sedentary sitting can alert the user to get up to
exercise. Because these applications perform a real-time,
user-facing action (as opposed to simply life-logging the
user’s activity), it is important that misclassifications be
minimized in order to prevent a degraded user experience.

We use supervised machine learning in our work, where
misclassifications can occur due to two reasons. First, the
trained model may be overfit, incorporating noise from the
training data. Second, the model may be insufficient,
producing spurious classifications for real-world behavior.
Any training data from scripted behavior results in a
model that is able to accurately classify single activities
but has difficulty when users perform arbitrary, naturalistic
behavior that may involve either activity transitions or
completely new activities. The problem stems from the
data collection, where gathering labelled mixed-activity
traces is prohibitively time-consuming. Some approaches
to treating naturalisitic activities include: labelling
videotaped user behavior [3]; labelling users performing
real-time multiple activities [5]; having users report their
own activities [8]; and defining a “null” class [2].

In this paper we apply a novel approach to handling such
spurious classifications. We first train an activity
recognition model using a C4.5 decision tree [7]; we use a
decision tree because the model occupies under 10KB of
memory and classifies quickly, requiring a number of
floating-point operations proportional to the tree height.
We then judiciously and automatically prune the tree after
the model is built. We take advantage of the C4.5 tree’s
redundant labelled leaves and apply thresholding to
remove the leaves that tend to produce misclassifications.
The result is an improvement of up to 10% classification
accuracy based on our collected data set.

Building the model
In this paper we describe a non-commercialized prototype
of a low-power accelerometer-only activity recognition
component that generates a continuous stream of inferred
human modes of transportation. We measured the system
to consume under 225 mW of power, which includes the
baseline CPU, on a Samsung Galaxy S III phone.

The activity recognition system runs in real-time on
Android phones and detects modes of transportation using
an accelerometer signal classifier. The end-to-end system
comprises two distinct phases. First, in an offline training
phase, 20 test participants (15 male and 5 female)
performed fixed physical activities while wearing
data-collecting smartphones. After we extracted sensor
features, we trained a C4.5 decision tree model. Second,
we loaded the model into our Android activity recognition
software to perform real-time classification.

We sampled the accelerometer at 32 Hz and kept a
128-sample sliding window with 50% overlap. Because the
phone can be oriented in different directions, we
normalized the readings into three orientation-independent
time series: Cartesian magnitude of the acceleration
vector; projection onto the true horizontal plane; and
projection onto the true vertical axis. For each of the
three time series, we computed the features: (i)
time-domain mean, standard deviation, power, and
entropy; and (ii) frequency-domain energy, average of the
top-5 highest-magnitude frequency, frequency with the
highest magnitude, the highest magnitude, and weighted
variance. In all, 9 features are extracted from each time
series, resulting in 27 total features. Our system
demonstrates a 98.1% per-window classification accuracy
with 10-fold cross-validation with our five activities:
Walking, Running, Driving, Biking, and Idling.
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Per-class summary statistics and the confusion matrix are
shown in Tables 1 and 2, respectively.

Class TP Rate FP Rate Prec Recall AUC

Walking 0.99 0.004 0.988 0.99 0.996
Idling 0.987 0.011 0.983 0.987 0.998
Running 0.971 0.00 0.997 0.971 0.996
Driving 0.97 0.01 0.971 0.97 0.995
Biking 0.966 0.003 0.966 0.966 0.996
Weighted Avg. 0.981 0.007 0.981 0.981 0.996

Table 1: Activity recognition results showing per-class true
positive rate, false positive rate, precision, recall, and area
under the ROC curve.

Predicted
Walking Idling Running Driving Biking

A
ct

u
a

l

Walking 98.97% 0.25% 0.06% 0.47% 0.25%
Idling 0.00% 98.73% 0.02% 1.14% 0.12%

Running 2.88% 0.00% 97.12% 0.00% 0.00%
Driving 0.29% 2.20% 0.00% 96.99% 0.52%
Biking 0.28% 0.56% 0.00% 2.51% 96.65%

Table 2: Activity recognition confusion matrix.

Pruning the model
We augmented our classifier with an algorithm that
improves classification for real-world usage. As we
showed, the system achieves a 10-fold cross-validated
accuracy of 98.1% on windowed data over our five
activities (with no null class). While this result is
appealing and is in line with prior work (e.g. [6, 4]), it is
misleading because it applies only to the single-activity,
scripted activity behavior recorded during training. Even
with cross-validation, two problems arise: (1) the built
model may be overfit to the data; and (2) mixed-activity,
naturalistic human behavior contains many motions and
transitions that were not captured during training. As a
result, the model can return spurious classifications in
real-world use. Indeed, we later show that the model
achieves only 87.8% accuracy when applied to a hold-out

set of real-world naturalistic behavior.

Consider the following output of our system that
illustrates the problem stemming from a user walking up
to a car, getting keys out of his pocket containing his
smartphone, and then driving off, where “getting keys out
of pocket” is one of an infinite number of naturalistic
behaviors. Let W, I, R, and D be the output classification
labels for walking, idling, running, and driving,
respectively, in the following left-to-right sequence:

WWWWWWDWDIIRDDDDDD

The underlined labels in the above sequence are the
spurious classifications that occurred from getting keys
out of the pocket. Ideally, the system should output the
labels for walking to driving without the interruption of
the unknown physical act. Such choppiness can be
avoided by applying smoothing (e.g. with a Markov
model), but our belief is that it is better to remove
misclassifications at the source as early as possible in
order to reduce pollution of any smoothing window.

Looking back to the sequence above, it is important to
understand why the underlined labels may be considered
spurious while other instances of the same label are not;
for example, D appears to occur in both spurious and valid
subsequences. Here we leverage a characteristic of activity
recognition generally not found in other domains, namely
the sequential, periodic nature of emitted classifications.
We define a classification Ct at time t to be spurious if in
a window Lpre before Ct and in a window Lpost after Ct,
there are labels that differ from Ct. In this example, if we
assume both Lpre and Lpost have a width of 5, then the
underlined labels match this definition but the
non-underlined labels do not. In our work we empirically
chose a width of 10, which is 20 seconds of real time.
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Now that such spurious classifications can be identified,
we apply an automated scheme to remove the problem
from the model itself with judicious pruning after the
model has been built. The spurious classifications stem
from the nature of the C4.5 algorithm; unlike other
tree-building approaches like Hunt’s algorithm, C4.5
allows the same label to occur at multiple leaves in the
tree, resulting in high accuracy at the cost of potential
overfitting as the training space becomes progressively
partitioned along each feature dimension axis. Our
approach takes advantage of this fact by finding and
removing the leaves that tend to cause misclassifications.

Looking at the decision tree leaves provides the intuition
that we can uniquely amend each leaf label with a simple
monotonically-increasing integer suffix, as shown in the
top half of Figure 1. This simplified illustration shows only
6 out of the total 46 leaves in our built decision tree.
Further, out of the 46 leaves in the complete decision tree,
there are 15 leaves with the “Driving” label; after applying
suffixes, these leaves then take the labels “Driving-17” (or
D17), “Driving-34” (or D34), and so forth.

With this amended tree in hand, we then observe its
output on a hold-out data set taken from three users,
each performing self-labelled naturalistic activities over
three days each, totalling 4473 minutes. All three users
previously participated in the scripted training. We ran
this hold-out data through the classifier to let it emit the
uniquely-identified labels, and in Table 3 we show the
results for some of the 15 unique “Driving” labels. For
example, the classifier emitted Driving-17 11,684 times
during this trace, and of those, 242 were spurious
according to the definition we provided earlier, resulting in
valid (that is, non-spurious) occurrences 97.9% of the
time. By looking at the validity percentages such as those

in this table, we can prune all labels whose validity is
below a threshold. For example, in the bottom half of
Figure 1, we show the label Driving-34 (or D34) being
pruned out of the tree. If a pruned leaf is reached during
classification, no output is emitted.

Figure 1: Illustrations of a simplified decision tree with only 6 out
of the 46 leaves in the complete tree. The top half shows the tree
with uniquely-identified leaf labels. The bottom half shows the
pruning of a leaf whose validity percentage fell below a threshold.

Figure 2 shows the classification accuracy from applying
pruned models to the self-labelled, naturalistic behavior
hold-out data set. Without any pruning, our classifier
achieves an accuracy of 87.8%. With a pruning threshold
set at 80%, the classification accuracy increases to 96.8%,
an improvement of 10.3%. However, this increase does
not come for free. Figure 3 shows the fraction of the
144,639 possible classifications that we actually emitted.
At the 80% threshold, only 123,624 (or 85.4%)
classifications were emitted; the remaining classifications
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were suppressed. At the 95% threshold, we retained only
11 of 46 leaf labels, producing only 64,564 classifications.
We thus observe the tradeoff between increased accuracy
and decreased number of emissions.

Leaf label
# of total

occurrences
# of spurious

occurrences
% valid

occurrences

Driving-5 154 131 14.9%
Driving-17 11684 242 97.9%
Driving-25 227 120 47.1%
Driving-34 1482 1017 31.4%
Driving-37 213 107 49.8%
Driving-39 22380 900 96.0%
Driving-40 238 95 60.0%
Driving-42 1683 195 88.4%

Table 3: Spurious classification counts of “Driving” leaves in a
hold-out data set with the percentage of valid (non-spurious)
occurrences.
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Figure 2: Classification accuracy at various pruning thresholds.
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Figure 3: Fraction of the 144,639 classifications that were actually
emitted at various pruning thresholds.

Conclusion
Activity recognition may produce misclassifications when
trained models attempt to classify real-world behavior. In
our work, we looked to mitigate this problem by pruning a
trained decision tree model by removing leaf labels that
tend to produce misclassifications using a thresholding
technique. This automated pruning produces up to 10%
improvement in classification using our data set.
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