iMASH: Interactive Mobile Application Session Handoff

R. Bagrodia; S. Bhattacharyya, F. Cheng, S. Gerding, G. Glazer,
R. Guy, Z. Ji, J. Lin, T. Phan, E. Skow, M. Varshney, G. Zorpas
UCLA Computer Science, Los Angeles, CA 90095-1596

Abstract
Mobile computing research has often focused on untethering an in-use computing device, rather than enabling the mo-
bility of the computation task itself. This paper presents an architecture, implementation, and experimental evidence
that together validate a new continuous computing concept, application session handoff. The iMASH architecture
leverages previous work on proxies, content adaptation, and client awareness to provide a unique, middleware-enabled
capability for continuous computing. Implementation in both socket- and RPC-based environments shows that very
fast, secure session handoff of non-trivial client/server applications across heterogeneous client devices and networks

is feasible: experiments on a number of applications yielded handoff latencies ranging from 0.5s to 2s.

1 Introduction

July, 2005

Maria Salas, eight months pregnant, is injured in a car
accident. Jim Brown stops to help and seeing Maria, he
uses his wristwatch to call 911 while sprinting back to his
car to get his broadband wireless PDA. Jim transfers his
conversation from watch to PDA as he returns to Maria,
since the PDA has bi-directional slow-scan video support.

The PDA also has a personal area network transceiver,
which is used to discover and communicate with Maria’s
medical alert chip. This data is forwarded to the 911 oper-
ator, who uses it to identify and notify Maria’s physician.

Dr. Hughes is out walking in the nearby mountains
when her watch chimes urgently. Glancing at the display,
she sees “patient injured,” pulls out her PDA and instan-
taneously transfers the messaging session to the PDA.
A PDA-based application retrieves medical history data
about Maria as Dr. Hughes jogs back to her car.

As she begins driving, her PDA session is transferred to
her car computer, which has a powerful processor, display,
and voice-recognition. This system retrieves from Maria’s
medical records a range of image and video data that ez-
ceeded the PDA’s capabilities. As she enters the city lim-
its, network support is transparently switched from the ru-
ral wide-area network provider to a metropolitan-area net-
work provider with higher bandwidth. The Medical Center
computing infrastructure senses the switchover, and up-
grades the quality of the image data it is sending.

Dr. Hughes joins a video-conferencing session with the
911 operator, emergency room, Jim, and en route res-

*This research is supported by NSF Grant ANI-9986679. Con-
tact authors at {rajive, sbhattac, fred, sbg, glenn, rguy, jizr, jinsong,
phantom, eskow, maneesh, zorpasg}@cs.ucla.edu

cue personnel. Guided by the emergency room and Dr.
Hughes, Jim is able to apply limited, but situation-specific
life support measures until the rescue team arrives.

As Dr. Hughes enters the Medical Center parking
garage, her session transfers back to her PDA, which has
a high bandwidth connection available on campus. She re-
mains in contact and while waiting for the elevator, she
consults further chart details and enters some additional
notes. As she enters the emergency room, she transfers
her PDA session to a system with wall-mounted displays
so the trauma team can easily see it. The transferred ses-
ston includes partially completed progress notes not yet
formally saved in the patient records database.

Maria soon arrives, and the trauma team and Dr.
Hughes are ready for her: they already know most of what
they need to do to heal her and save her unborn child. In
fact, the rescue team has already begun critical steps under
the joint guidance of the trauma team and Dr. Hughes.

Although much of the technology implied in the sce-
nario exists today, either as off-the-shelf products or re-
search prototypes, a critical missing link is software sup-
port for continuous computing, which would enable a ses-
sion to move seamlessly between heterogeneous platforms.
A primary goal of the iMASH project is to develop the
concepts, architecture, and prototype implementation to
provide effective support for such a service. A key enabler
is application session handoff which leverages existing
work on proxies, content adaptation and client-awareness
to provide a unique capability for continuous computing
that satisfies the problem constraints outlined below.

The core concept, challenge and claim of application
session handoff is that it is possible to easily identify a
subset of application state that concisely captures the se-

mantics of a partially completed computation; efficiently
transfer that state subset to a different client device; and
effectively resume work on that target platform—all with
very low latency while satisfying appropriate security,
scalability and heterogeneity constraints.

Each of the above three steps is a challenge in its own
right. Our main effort to date has been on the second
challenge of efficiently transferring state to another, possi-
bly heterogeneous client device, and that focus is reflected
below. The key insight in our approach is that object
type knowledge can be exploited to manage the amount
of state that needs to be transferred between clients, in
much the same manner that proxy transcoding manages
the amount of state delivered from server to client.

In this paper we outline application session handoff,
detail a supporting architecture and its implementation,
and validate the concept with experimental evidence.

1.1 Problem Characteristics

The continuous computing problem space is quite large
and diverse. Our particular problem domain, medical
informatics, displays a multidimensional character that
constrains the solution space in a number of ways:

client /server computing: Much of medical informat-
ics today uses this model; other models (e.g., peer-
to-peer) clearly warrant future research.

heterogeneous client devices: Up to six orders of
magnitude routinely distinguish client devices in di-
mensions such as CPU speed, memory, secondary
storage, display area, input ports, and network band-
width and latency. The permutations of dynamic
conditions over these ranges effectively yields enor-
mous heterogeneity.

heterogeneous network infrastructure: In a hospi-
tal, most intranet infrastructure can be provisioned
with high-capacity, low-latency components, but the
last hop characteristics will likely vary widely.

user mobility: Highly mobile users traverse a range of
settings in which physical heterogeneity imposes di-
verse constraints on computation and/or communi-
cation capabilities, in turn motivating a user to dy-
namically (and unpredictably) choose from a spec-
trum of client platforms. This implies that content
adaptation is essential: data delivered from server
to client should be tailored to satisfy constraints
imposed by current network conditions and device
characteristics.[FGBA96]

Mobility further introduces a new problem: the need
for in-progress computation and communications to
move across heterogeneous client platforms with low

latency. The combination of movement, diversity,
and timeliness has been an unsolved problem.

legacy servers: Medical informatics administrators are
conservative about “enhancements” to their server
environments (cf. [vMCT95]). Any novelties we pro-
pose need to leave a legacy server largely untouched:
no additional code may be added to the server soft-
ware or even share the processor, and no changes in
the semantics of client/server interaction are allowed.

client application-aware: It is acceptable for client ap-
plications to be aware of changes to the legacy envi-
ronment. In the spirit of Odyssey[Nob97], we believe
that application awareness can be beneficial to both
the application and the enhanced system environ-
ment. Client awareness implies that the application
be amenable to augmentation: source code is avail-
able, and semantic knowledge is accessible.

diverse data types: Medical databases contain high-
resolution still image series (gray-scale, false-color,
full-color), gray-scale medium-resolution video, dic-
tation audio, and traditional text-based records.

These domain-driven characteristics have shaped the
development of application session handoff and the re-
sulting iMASH architecture. Our work is applicable to
other domains to the extent that they generally share the
same criteria; a change of constraints might enable (or
preclude) different architectural choices.

1.2 Related work

Our work builds on several well-known areas (proxies,
content adaptation/transcoding, client-awareness) and is
complementary to recent work on continuous computing.
The seminal work on proxy-based content adaptation is
the BARWAN project[FGBA96], in which the argument
for adapting data on-the-fly is made. Recent work by
Lum and Lau [LLO02a, LL02b] focuses on the decision-
making aspects of content adaptation, including both the
complexity of making such decisions, and the trade-offs
between on-the-fly approaches and storing pre-adapted
version of data. The benefits of client-awareness of envi-
ronmental changes in Odyssey are presented in [Nob97].

Relevant recent work in continuous computing includes
the One.World project at the University of Washington
[GDLBO02], which looks at the pervasive application mi-
gration problem from the program development environ-
ment, and proposes a structured view of communication
channels that requires the explicit disconnection and re-
connection of servers. (iMASH very deliberately pre-
serves open channels from a server’s perspective; our work
at the application level contrasts with the approaches of
Snoeren [SB00] and Zandy [ZMO02] at the network level.)

One.World also argues for a homogeneous execution plat-
form, to support the movement of code, where we pre-
sume code is already resident on a device. An exhaustive
treatment of conventional process migration is found in
[MDO0]; our focus on heterogeneity precludes the direct
application of these techniques. Roman et al. [RKCO01]
propose the use of reflective middleware to support con-
tinuous computing across heterogeneous platforms.
Early portions of iMASH research have been presented
at a handful of workshops [PGBO01] [LGGB02] [PZB02]
[SKP02] ; this paper provides an overall integrating con-
text for that work, and presents new experimental data
based on an implementation of the entire architecture.

1.3 Road map

The next section provides an overview of application ses-
sion handoff (ASH). Section 3 describes an architectural
design that implements iMASH handoff. The architec-
ture is followed by a report in Section 4 on our experi-
ence with iMASH, in the form of a series of experiments
on various iMASH-enabled applications. Conclusions and
future work are presented in Section 5.

2 Application Session Handoff

Application session handoff addresses all of the charac-
teristics delineated in Section 1.1. The most challenging
of these are heterogeneous client devices and networks,
especially when poorly provisioned in these regards. Im-
poverished clients are unable to use emulation to execute
foreign tasks and low-bandwidth network links can not
deliver large data objects or sizable binary process images
in a timely fashion. The ASH approach looks through the
opaque shroud that traditionally envelops an executing
process, so that it can apply needed conversions to essen-
tial state that allow for the computation to move to and
continue on the target device. iMASH enlists the assis-
tance of the application itself to identify essential applica-
tion state, a step we call semantic savepointing. The state
is transferred to an intermediate host, where conversions
are applied to hide the heterogeneity between source and
target clients. The converted state is then delivered to
the target client, where it is used by a target-native ver-
sion of the application to “restart” where computation
paused on the source client.

This client-aware approach is surprisingly well sup-
ported by existing applications—in particular, those that
savepoint state for recovery (e.g., Microsoft Word 2001).
Such an application is already structured with preserva-
tion of essential state as a first order concern, and also
is prepared to resume execution based on well-formed
state. This issue is explored further below. Modern appli-
cations are also commonly re-targeted to heterogeneous

platforms; versions of the Microsoft Office suite, for ex-
ample, have been created for Windows NT workstations
and PocketPC PDAs. Note further that content adap-
tation is increasingly common, though typically on data
delivered from server to client; content adaptation as an
integral feature of handoff is novel.

In client/server environments, the bulk of data used
by a client application is provided by server(s). ASH pro-
vides proxy-based content adaptation to ensure that data
delivered to a client is compatible with client constraints,
and arrives in a timely fashion. Content adaptation is
driven by both relatively static user, device, and applica-
tion profiles, and typically dynamic network profiles. A
proxy is employed to shield legacy servers from change,
and to relieve potentially weak or overburdened clients
from the complexities and costs of content adaptation.

ASH anticipates narrow last-hop network links in the
upstream direction as well, and so it exploits caching at
the proxy to eliminate the need to move server-supplied
data from the client. Newly created data, of course, must
be transferred explicitly. ASH also incorporates, with the
assistance of the application, a facility that enables client
operations on data to be concisely shipped and quickly
re-applied to a cached data copy. Together, these two
features enable the first half of ASH (“session suspend”)
to be accomplished with low latency.

The second half of ASH, session resume, involves the
delivery of session state to the target client and initializ-
ing the target application. ASH satisfies the constraints
of the target client and its network environment in part by
content adapting the session state before delivery. ASH
also supports the possibility that the target client applica-
tion is sufficiently different from the source client version
that it may only desire a subset of session state elements.
Prior to state delivery to the target, an XML description
of the state elements is given to the client, which in turn
requests the session (sub)set of interest. It is this subset
that is adapted and delivered.

Session resume, like session suspend, is designed to op-
erate with low latency. Our experimental evidence (see
Section 4) shows this to be the case, except when a poorly
ported application requires excessive resources on a weak
client—such as a large Java application on a slow PDA.
In such situations, modest latency (<10s) handoff results.

A client application under consideration to be iMASH-
enabled is required to be a suitable candidate for semantic
session savepointing: it must be feasible for an applica-
tion programmer to identify points in the application’s
execution at which the essential semantic state can be
frozen. Interactive applications tend to naturally have
such points, even when multi-threaded, as a side-effect of
mechanisms that support user interaction. In many cases,
application session handoff will be formally instigated by
the user via the legacy interaction mechanism.

Note that in general, saving client state back to the
server, terminating the local execution and starting an
application on the target device (conventional “check-
point /restart”) is not acceptable: the client state may
be incomplete, and thus either is not acceptable to the
server, or is not appropriate to expose to other clients.

Freezing client/server interprocess communication
(IPC) requires a bit of care. Discrete object transfers
are straightforward (simply wait for the entire object to
be delivered), but streaming data is more difficult: in
general, handoff should occur at a “good” point in the
stream, which is at the least a protocol-specific issue. For
example, a reasonable point to freeze processing of a mo-
tion JPEG stream is at a frame boundary; but for an
MPEG stream, a full “group of pictures” is the proper
semantic unit boundary. A correct freeze may require co-
operation between the client application and the session
handoff service [LGGB02]. (See also Section 3.3.1.)

We have iMASH-enabled a variety of applications, in-
cluding several web browsers, a paint program, a remote
shell utility, a radiology teaching tool, and various video
players. In some of these cases, source code was available
but adequate documentation was not, which made the
tasks of implementing semantic savepointing and session
restart non-trivial. (For example, the remote shell had
about 100 separate elements of session state.) In oth-
ers, source code was not available, and yet we were able
to substantially support application session handoff for
these applications by creating a simple “wrapper” appli-
cation for each that is itself iMASH-enabled and in turn
executes the black-box application as a child process.

The Galeon browser (http://galeon.sourceforge.net),
was iMASH-enabled in under one hour by using the wrap-
per technique. In this case, we leveraged Galeon’s exist-
ing recovery mechanisms that aggressively maintain cur-
rent application state (e.g., per-window history and on-
screen window placement) in a set of XML-based files.
The wrapper simply re-packages the files as session state
during handoff, and the target side wrapper creates files
expected by Galeon on startup. Additional time (about
a day) was required to enhance the wrapper with an
HTTP proxy capability so that Galeon’s HTTP requests
would route through iMASH, thus enabling iMASH con-
tent adaptation benefits. By leveraging iMASH’s exten-
sible content adaptation architecture (see Section 3.3.2),
just one more day was invested in designing and building
a content adapter for the XML-based state, so that auto-
matic device-specific window resizing is performed during
handoff, as shown in Figure 1.

iMASH-enabling an application could be greatly eased
and possibly even fully automated with appropriate ap-
plication programming language constructs and compiler
hints/directives available to the programmer. This is a
topic of ongoing research (cf. One.World [GDLB02]).

@ Sun

Figure 1: Pre- and post-handoff views of an application session
handoff from a 19” workstation to a 4” PDA screen. Note the large
application window has been resized to fit the smaller display.

3 1MASH Architecture

In our problem domain, the two most significant factors
affecting architectural design decisions are client device
heterogeneity and unaware (immutable) legacy servers.
The former argues against an operating system-level ar-
chitecture, to avoid repeated re-implementation for each
operating system; the latter implies that a conventional
middleware-level client/server solution is inadequate, be-
cause no place exists to host “server side” middleware.
Further, clients are often ill-suited to hosting additional
computation burdens.

The iMASH solution is middleware-oriented, but we
place minimal middleware burden on clients—and none
on legacy servers—by introducing a middleware service
hosted by (new) additional platforms placed between
clients and legacy servers. This service acts as a client
proxy to legacy servers, and is in the critical path be-
tween clients—effectively a proxy between them.

The architecture material is organized in three parts:
Section 3.1 motivates the need for multiple middleware
servers to instantiate the overall middleware service; the
resulting impact on application session handoff is then
considered in Section 3.2; and in Section 3.3 we delve into
the details of middleware server structure and operation.

3.1 Middleware service

In general, the middleware service must be reliable, se-
cure, scalable, transparent to legacy servers, low latency,
and impose low overhead on clients—all while providing
its basic service, application session handoff. To achieve
this, we believe that the middleware service must itself be
a distributed system. The iMASH middleware service is
provided by a collection of middleware servers that work
cooperatively to support application session handoff. Fig-
ure 2 shows this structure.

A middleware server (MWS) mediates all communica-
tion between client and server, and it additionally main-
tains application session state on behalf of clients so as
to assist with low-latency application session handoff be-
tween client devices. It also provides the bulk of the se-

RS
Middleware

. Multi%lexer
Service
\ | |

Ml ‘ ‘ MZ ‘ ‘ Mn ‘

“ | -

Figure 2: Middleware server architecture, with a number of mid-
dleware servers (M) on the middle tier and a multiplexer just
above, and their current clients (Cg) on the lower tier.

curity services on which the above two functions rest.

3.1.1 Multiple middleware servers

The iMASH middleware service is routinely expected to
perform potentially time- and space-expensive computa-
tion (e.g., adaptation, encryption, session state storage).
With thousands of client devices and application sessions
anticipated in a large hospital, it is reasonable to project
the inadequacy of a single middleware server, and so a
scalable architecture that allows a number of middleware
servers is essential.

There are additional benefits to multiple middleware
servers, if the system is properly designed. For exam-
ple, multiple middleware servers also enable the deliber-
ate placement of middleware servers at distinct points in a
network topology, such as close to a wireless base station.
One could also place a MWS at a remote location, so as
to position adaptation closer to the client device and user.
As a client device moves geographically, the “best” path
between an application server and client may change and
thus motivate a change of middleware server. Even when
a client is stationary, the presence of network congestion
or other conditions might spur a change of middleware:
a sufficiently better path to the client device might ex-
ist from a different MWS, which could justify the cost
of a change. The ability to change middleware servers
on the fly further allows for dynamic load balancing (see
[PGBO01]) at both session admission and intra-session.

The need to maintain legacy application server un-
awareness of iIMASH conflicts with the need to change
middleware servers: the middleware proxy role hides the
client application from the legacy server, but naturally
substitutes its own visibility. iMASH deals with this
problem by introducing a very thin service layer (“mux”)
which multiplexes communications between a legacy ap-
plication server and middleware servers.

The mux has no role beyond hiding a change of mid-
dleware server from the unaware legacy server. From the

application server’s perspective, the mux ¢s the client.
Following instructions from the middleware servers, the
mux merely directs (or redirects) a stream to the appro-
priate MWS. In our testbeds, we typically implement the
mux as an application-level router on a conventional PC;
there are obviously programmable router solutions that
would be expected to incur much lower latency. If the
legacy server operating system supports mobile sockets
[ZMO02], the mux could be eliminated entirely.

3.2 ASH types

To jointly support both multiple client devices and multi-
ple middleware servers, iMASH provides application ses-
sion handoff in two directions: client handoff, in which the
device executing an application changes; and, middleware
server handoff, in which the middleware server support-
ing the session changes. The resulting three handoff types
are depicted in Figure 3.

BEFORE cASH MASH FASH
L] E] N N
560 o9 coostoenhen

W,
EREE B ODo Oon 08 ©
Figure 3: The three types of application session handoff. The

gray arrow indicates a pre-handoff data flow from an Application
Server (AS) through the middleware service to a Client (C). The
black arrow shows the corresponding post-handoff relationship for
the respective types of handoff.

We use CASH to denote a client-only application ses-
sion handoff in which both source and target clients are
supported by the same MWS. We use MASH to denote a
middleware-only application session handoff, in which the
client application continues execution on the same device
while the session support switches to a different MWS.!
We use FASH to denote a third type of handoff, full ap-
plication session handoff, in which a new client and a new
MWS support the session after handoff.

The motivation for CASH is driven by the need for a
mobile user to change devices when moving among het-
erogeneous environments. CASH is almost always user-
initiated since the user is switching physical devices. This
implies that CASH generally occurs on a coarse time
scale, with a typical frequency of minutes to days. Users
may also be willing to tolerate a few seconds of handoff
delay. In the opening scenario, the session transfer from
PDA to car computer is an example of CASH.

MASH is driven by infrastructure concerns: scalable
performance and flexibility in network topological and
geographical placement, and responsiveness to network
performance issues. MASH is rarely user-initiated, and

IMASH is loosely analogous to cellular telephony handoff be-
tween cell sites, but occurs at an application level quite independent
of the network level.

so must appear to be delay-free. In the scenario, the
WAN-to-MAN city limits switchover is a MASH.

FASH is much closer to CASH than MASH in both
spirit and design: like CASH, it is driven by the user,
and the change of middleware servers is an internal side
effect. An example of FASH in the scenario is the session
transfer from PDA to emergency room computer.

3.3 Middleware server architecture and
operation

The iMASH middleware server architecture supports ap-
plication session handoff through a variety of mechanisms,
as diagrammed in Figure 4. Here we describe several of
the most important ones, including session handoff man-
agement, content adaptation, and security.

To ,MUX

Protocol
Handler

Session Manager

Session
State [y

Content
Adaptation
Pipeline

Object Cache
* 0O A& @

Authentication and Secure Communications

To Client

Figure 4: The middleware server architecture, showing the Ses-
sion Manager, Object Cache, Protocol Handler, Content Adapta-
tion Pipeline, and Security Layer.

3.3.1 Handoff Management

Session handoff management naturally divides between
the types that require a semantic session savepoint
(CASH and FASH), and the one that does not (MASH).

Savepoint-based Handoff Effective savepoint-based
handoff relies heavily on the ability to exploit actions
taken in the normal course of events that occur in
client-to-MWS-to-legacy server interaction. In particular,
iMASH caches at the MWS discrete (i.e., non-streaming)
server-supplied objects for later use in session handoff.
Recall from the opening scenario Dr. Hughes’ use of the
PDA to retrieve Maria’s medical records. An application
on the PDA is executing and making queries of a legacy
medical records server at the (remote) hospital. The mid-
dleware server mediating the connection recognizes that
the requested medical record’s complex data structure in-
cludes several data types for which the PDA is generally
inadequate: high-resolution images whose size exceeds
the PDA’s memory, and video which exceeds the PDA’s

processor speed to display. None of the instances of these
types are passed on to the PDA client in their original
form; however, the images are cached at the MWS, and
“thumbnails” (content-adapted versions) are delivered to
the PDA, along with unmodified text-based data objects.

At this point, the PDA-based client application has
received a mix of original and content-adapted data ob-
jects from the legacy server, via the MWS. Upon enter-
ing the car, Dr. Hughes initiated a CASH from the PDA
to car computer—which happens to be different (in this
case, more capable) in many key respects, especially CPU
speed, memory capacity, and display size. Ideally, the
transferred session will automatically incorporate data
object versions appropriate to the target device, unbiased
by the source device’s limitations.?

To effect the handoff, the current essential application
state from the PDA must be collected and shipped to
the middleware server, after which the source client ap-
plication is terminated. At the MWS, the session state is
cached, content adapted as needed, and delivered to the
target device for insertion in the target application.

In our architecture, the handoff request is forwarded
by the iMASH-enabled application through the iMASH
client layer support library (previously linked into the
application) to the MWS currently serving the session.
The MWS verifies that the handoff is authorized (see Sec-
tion 3.3.3), and if so, arranges with the target client (and
target MWS, if a FASH) to be prepared for session hand-
off. In particular, a session skeleton is prepared on the
target client, and the target application begins execution
and waits for the savepoint to arrive. The (source) MWS
then invites the source client application to savepoint.

iMASH application state is divided into three types:
server objects, i.e., those obtained from the legacy appli-
cation server, such as an X-ray image; application objects
created locally by the client application, such as text com-
ments about the image; and private objects created by the
application, such as a temporary buffer holding copies of
the image and comments. An application savepoint only
includes server objects and application objects: private
objects are those not intended to be part of session state.
Server objects are logically, not physically, part of the
savepoint, as they are already stored at the MWS, hav-
ing been cached there on the way from the application
server to the client. Application progress is represented
explicitly as an application object in the savepoint.

When the savepoint is complete—which might not
be immediately, depending on application activity and
semantics—it is transferred to the source client’s MWS.
At this point, the source client cleans up its local session
state and exits, retaining no session knowledge at all.

2This must be the case to avoid a greatest common denomina-
tor effect, in which the least capable client constrains the session’s
future—and thus neuters the value of handoff.

The MWS merges the savepoint with any existing
stored session state, and sends a summary list of session
state elements to the target client. For FASH, the ses-
sion state is first copied to the target MWS, which then
finishes the handoff interaction with the target client.

The target client selects which elements of session state
it wishes to receive, and makes an aggregate request to the
MWS for them. The MWS sends copies of the selected
session state elements to the target client after possible
adaptation. When the target client has received all of the
requested elements, it initializes its application-specific
semantic state and “resumes” execution.

The extra hop through the middleware server is essen-
tial: clients are not presumed to have communications
hardware and services in common; weak clients are not
forced to deal with heterogeneity-induced data format
conversions; and low-latency handoff requires an economy
of upstream data movement which middleware servers can
provide by caching objects and other application session
state. The MWS maintains session savepoint data as a
part of the session state—even after execution resumes at
a target client device.

Storing a copy of server-supplied objects at the MWS is
a key issue in providing very low latency application ses-
sion handoff: while a number of large objects may have
been received by the client application over a long period
of time, handoff must be accomplished in a short inter-
val. iMASH must avoid moving data from client to MWS
wherever possible, since in many interesting scenarios the
upstream channel is severely constrained.

Further, client heterogeneity often makes the version
of an object at the source client uninteresting elsewhere:
adaptation done to the object on its way from the server
to the source client is client-specific. A very different
adaptation probably should be performed for that object
when destined (during ASH) to a heterogeneous client.

Middleware-only Handoff Middleware-only applica-
tion session handoff is different than CASH and FASH
because the client is typically not the initiator. Instead,
the middleware server initiates the handoff, perhaps due
to its awareness of a better path to the client through
a different MWS, or perhaps because the current MWS
is overloaded. This is a significant difference, because in
CASH and FASH the client explicitly chooses when to do
a handoff, and latency incurred at that point may be ac-
cepted by the client as the cost associated with the bene-
fit. But in MASH, the user does not routinely participate
in the middleware handoff decision, and so should not be
noticeably penalized by handoff latency. We are explor-
ing both passive (upcalls) and active (downcall, polling)
approaches to communicate important changes in net-
work conditions to iMASH. The middleware prototype
responds to an external application-level network moni-

toring task that periodically assesses packet delay.

Once a MWS has decided that a MASH should occur,
it contacts the target MWS and indicates its desire for a
MASH. The target MWS has an opportunity to deny the
handoff (perhaps it is overloaded), but in the successful
case it prepares a skeleton session in anticipation of re-
ceiving session state from the source MWS. Upon receiv-
ing a positive acknowledgment from the target MWS, the
source MWS notifies the mux that it should immediately
redirect specific streams to the target MWS.

The mux knows nothing about the content of a stream
flowing through it from the application server to a mid-
dleware server. Therefore, a stream is redirected at an
arbitrary point. The target MWS must buffer the redi-
rected stream, until it has received all session state from
the source MWS. In addition to routine session state, the
source MWS must also forward any buffered stream data
that has not been processed, so that this data may be
prepended at the target MWS to the front of its buffered
stream data to preserve the correct stream data ordering.

3.3.2 Content Adaptation

Content adaptation has been well-trod ground for sev-
eral years [FGBA96, Nob97, LL02a, LL02b]. iMASH
exploits content adaptation to ensure that only client-
device appropriate data is delivered to a client applica-
tion, whether the data is coming directly from a legacy
application server, or indirectly in response to application
session handoff. The former case is analogous to standard
proxy-based content adaptation [FGBA96]; the latter is
an iMASH-unique variation which relies on a middleware
server-cached copy of an original object as a basis for
handoff-induced content adaptation.

The basic iMASH content adaptation architecture is
fairly conventional: it includes tools that recognize
ISO/OSI Layer 4 and above protocols, parse as needed to
extract objects (possibly deconstructing complex aggre-
gate objects), perform selected content adaptation, and
reinsert the adapted object(s) into a stream of a type
expected by the client application. The architecture is
extensible, in that it anticipates new protocols and data
types. It also allows for a series of adaptations on an
object, much like a UNIX-style pipeline of filters.

Profile-driven Content Adaptation The general
content adaptation problem is one of constraint satisfac-
tion: given an object with certain characteristics, a set of
constraints on those characteristics which must be met,
and a set of adapters which can transform characteristics,
which adaptation(s) should be applied in which order to
minimally meet the constraints?

iMASH employs a three-step process—data charac-
terization, command generation, and pipeline execution

[PZB02]—which today relies on simple heuristics to de-
termine what adaptations to apply. Each of the three
steps is designed for extensibility, so that additional data
types and adaptation functions can be added readily.

Object characterization is performed by a type-specific
function which provides an XML representation of an ob-
ject’s attributes. If an object has no matching character-
ization function, iIMASH simply passes the opaque object
on the client with no adaptation.?

Constraints are obtained from several sources such as
client device, application, user, and network, and repre-
sented as XML profiles. Profiles are by nature extensible.
A client device profile typically describes the processor
speed, memory capacity, display dimensions, and nomi-
nal bandwidth of the currently-in-use network interface.
A wuser profile often contains user preferences such as a
“patience factor” to express the duration of a tolerable
per-object latency. A network profile describes recent dy-
namic network conditions; ongoing work is examining a
tight integration of network quality of service information
with content adaptation, especially of streaming data.
Profiles are merged within the pipeline, giving general
precedence to the most-restrictive constraints, to produce
the set of constraints to be satisfied. A profile can also
explicitly indicate that no adaptation may be performed.

The object characteristics and constraints are then fed
into the command generator, where they are compared in
a pre-determined order, and adapters are chosen which
can transform the object to satisfy the constraints. A
sequence of adapters is then executed on the object, and
the final resulting object is given to the protocol handler
component for re-insertion into the protocol stream and
ultimately, delivery to the client.[PZB02]

3.3.3 Security

iMASH enables and encourages a much larger number
and variety of client devices than the legacy systems
which it enhances, and many of these clients are expected
to be mobile. Mutual authentication between middleware
servers, and between clients and middleware servers, must
be accomplished on a large scale and done with very low
latency during handoff.

In the medical domain (and others), information pri-
vacy and integrity is essential. Recent U.S. legislation
imposes significant potential liability on those who deal
with medical data [Hel00]. Today’s mobile computing en-
vironment relies heavily on wireless technology with well-
known exploitable weaknesses (e.g., see [BGWO01]), so it is
prudent to ensure privacy and integrity above this level.
We also want to limit exposure resulting from a stolen
client device or compromised middleware server.

3This is a simple policy decision. Another alternative is to return
a null object.

Further, the novel IMASH notion of application session
handoff raises new security issues above the network layer:
How will trust relationships be transfered and maintained
during handoff? How to transfer/adapt session encryp-
tion keys to ensure privacy when transferring a session
to a new device? Who is authorized to trigger a session
handoff, and to (and from) what client devices? What
policies should govern such authorization, and what com-
ponents enforce them?

Basic Solutions iMASH uses a bi-level security frame-
work, layering a user/session authentication and autho-
rization over a device level authentication [SKP02]. As
the first step in (re)joining an iMASH network, a client
device performs a mutual authentication with a single
middleware server. The authentication protocol and all
subsequent data communication use WTLS[WAP], which
uses a certificate-based, public key authentication proce-
dure followed by the use of secret key symmetric encryp-
tion to protect data flowing on possibly lossy transport
services (e.g., UDP over wireless). Each device and MWS
has a unique certificate issued from a trusted authority;
the certificate is assumed to be stored in a tamper-proof
container on the device. We assume our certificate au-
thority is scalable, reliable, and accessible.

Because critical steps in the public key encryption
methodology are very computationally expensive—up to
ten seconds or more to encrypt a 1KB block on a modest
PDA—iMASH is designed so that it only requires a client
device layer authentication when the client first joins the
network, which in a fully iMASH environment is at boot
time.® When the authentication handshake is complete,
a low-cost, secure, encrypted, channel exists between the
parties that uses a symmetric encryption algorithm® key
produced dynamically during the handshake.

This initial device control channel is used to enable ex-
tremely quick generation and exchange of additional keys
which in turn are used to establish secure session con-
trol channels (one per session) and session data channels
between a client application and a MWS used for mediat-
ing communication between client and legacy application
server. Each session has a distinct session control channel
based on a unique key, so that sessions are individually
protected. iMASH creates new keys for each application-
requested session data channel to minimize potential data
exposure through the compromise of a single key.

Some clients may find that even relatively inexpensive
symmetric key encryption is too costly to impose on all
data transfers. iMASH allows a user to specify that null

4Initial MWS selection can be arbitrary; a “poor” choice can
easily be rectified by a subsequent middleware handoff.
5Middleware servers are presumed to be powerful enough that
occasional costly authentication in the critical path is tolerable.
SWTLS supports DES, 3DES, RC5, and IDEA.

encryption is acceptable for session data channel commu-
nication for non-sensitive data. All device control channel
and session control channel communication is required to
use strong encryption, however, because these channels
are used to create keys for new session/data channels.

The user/session level authentication takes place dur-
ing session creation: a password-based protocol is used to
authenticate a user to the MWS, prior to the initialization
and execution of a client application.

iMASH security policies require that authorization be
given in several places. First, the MWSs have policy re-
garding which sessions may handoff to which devices (e.g.,
a MWS may disallow moving a session containing patient
records to a public workstation). Also target devices re-
serve the right to refuse sessions, so that users may allow
only their own sessions to be transfered to their own PDA.

Secure Handoff Session handoff poses interesting
novel security challenges. First, at device boot time, a
device is authenticated to a particular MWS. The hand-
off target device is authenticated to some MWS, which
may be different than the MWS of the source client. In
the case of middleware handoff, the client device is not in
general authenticated to the target MWS. In both CASH
and FASH, client devices do not trust each other. In all
cases, there is no time to do a computationally expensive
handshake to establish trust with the new MWS or client
device. This handshake avoidance is especially critical if
one of the clients is a low-end device.

iMASH exploits the relationships that a client trusts
the MWS to which it is connected, and the MWSs trust
each other. The fact that all clients have a secure de-
vice control channel (DCC) is also critical. The transi-
tive trust relationship allows a client to trust a second
MWS in MASH or transfer its session to a second de-
vice in CASH or FASH. The existing secure DCCs enable
new encryption keys to be created for all control and data
channels on any handoff. This ensures greater security in
the event that a device (or middleware) is compromised:
once a session moves from the affected host, that host has
no knowledge of the encryption keys used post-handoff.

4 Experiments

We have developed a prototype implementation of our
middleware-based application session handoff architec-
ture, and have iMASH-enabled a number of applications.
This section outlines our experimental testbed and then
describes several experiments using a mix of iMASH-
enabled applications and middleware service implemen-
tations. The first two experiments use a socket-based
iMASH architecture implementation with browser and re-
mote shell applications; the third experiment employs an

RPC-based iMASH prototype and a video player appli-
cation. The experimental results presented below demon-
strate that application session handoff is a viable ap-
proach to very low latency continuous computing.

4.1 Experimental Testbed

The purpose of the experiments reported here is to further
establish the validity of the iMASH approach to applica-
tion session handoff with a full-featured implementation
under stress. To do so, we created a testbed that en-
ables us to do controlled assessment of various aspects
of iMASH. The testbed is designed to be reasonably rep-
resentative functionally of a small scale iMASH environ-
ment. It contains a single application server, a single mul-
tiplexer (mux), two middleware servers, and four clients,
as shown in the architecture diagram in Figure 2.7 All
of the experimental results presented here were produced
on this testbed.

The physical testbed is largely constructed from ini-
tially homogeneous components that are selectively re-
configured (hardware and/or software) to produce desired
degrees of heterogeneity. While an “ideal” testbed would
have a variety of heterogeneous hardware and software
pieces, there is also value in underlying homogeneity: for
example, we were able to quickly trace an unexpected
transient latency variance to a particular machine sim-
ply by exchanging roles with an identical machine. (We
replaced the unreliable box, and re-ran the experiments.)

Our base machines are Dell Inspiron 4000 and 8000
laptops running Pentium IIT processors at 800MHz with
256KB cache, 128MB RAM, and standard issue 20GB
disks. Network support is provided by PCMCIA-based
3COM 10/100Mbps “575” ethernet cards nominally run-
ning at 100Mbps through a pair of stacked 3COM Office-
Connect Dual Speed 8 switching hubs.

Our operating system environment is a Redhat Linux
2.2.17-8 kernel with most daemons enabled with default
parameters (sendmail, ftpd disabled). Our client applica-
tions, autotester and all iMASH components are currently
written in Java; the base JVM is Blackdown 1.3.1.%

In addition, the testbed includes a single Compaq iPAQ
3670 PDA running a 200MHz ARM processor with 64MB
internal memory (32MB RAM, 32MB flash); a 240x320
pixel, 12-bit color display; and, a PCMCIA-based 10Mbps
wireless WaveLAN IEEE 802.11b card. The iPAQ runs a
Familiar Linux 2.4.7 kernel, and Blackdown Java 1.3.1.

In all of the results presented here, the application
server, mux, and middleware servers execute on indi-

"as shown in iMASH design and current implementation support
an arbitrary number of all components. Ongoing work is using
simulation to extrapolate predicted large scale behavior.

8We compile our Java code with the “green threads” option, in
large part to avoid known scheduling interaction deficiencies be-
tween this JVM and Linux 2.2 kernels.

vidual machines as described above. This is consistent
with the target domain scenario of well-provisioned back-
end infrastructure. Note that the mux component in the
testbed is relatively weak and thus imposes much higher
latency than would a “real” mux implemented on a pro-
grammable router. We also expect a MWS to be a pow-
erful machine, as adaptation is often CPU intensive.

The testbed is set up with four client machines: three
Dell laptops and one iPAQ PDA. One of the laptops is
configured as a “powerful workstation”, with a 100Mbps
network card and “large” full color screen.® A sec-
ond laptop plays the role of mid-range desktop, with a
1,000x1,000 pixel full color display and 100MBps net-
work. A third laptop represents a truly mobile laptop,
with the same parameters as the mid-range desktop ex-
cepting a 56Kbps network connection. The iPAQ is the
fourth client, and has the screen size, color depth, and
bandwidth constraints listed above.

The first two of the three experiments additionally
share a common high-level testing regimen: we designed
an autotester to drive an iMASH-enabled application with
a specified synthetic workload, networking environment,
and handoff profile.!? The autotester software is designed
to exercise specific aspects of IMASH in a randomized, yet
repeatable, manner. The autotester is script-driven, and
causes iMASH sessions to be created on specific client de-
vices with specific applications and synthetic workloads,
and externally triggers session handoff to specific clients.

4.2 Minibrowser Experiment

Each iMASH testbed component—legacy application
server, mux, middleware server, client, or autotester—
is hosted on its own machine. Additionally, we wrote a
specialized “minibrowser” application which at startup
obtains a pre-determined workload script of objects to
request along with inter-request delays.

The workload consists of randomized sequence of re-
quests for each of 200 unique image files, ranging in size
from 0.5KB to 1.25MB. The sizes are roughly evenly dis-
tributed over the entire range, with some tail heaviness
toward the smaller sizes. The inter-request delay is Pois-
son distributed with a mean of 2 seconds. Once started,
the minibrowser executes the workload without further
direct interaction with the autotester. Upon completion,
the client exits, and the iMASH session terminates.

Concurrent with the minibrowser execution of the ob-
ject request workload, the autotester uses a randomized

yet repeatable script to trigger application session hand-
off (either CASH, MASH, or FASH) of the minibrowser

9«Large” means that no attempt will be made to content adapt
an image to fit the screen

10This autotester is currently specific to the socket-based iMASH
implementation, so it was not used for the video experiment.

session. In the work presented here, handoffs are in-
jected into the application session execution with an inter-
handoff request delay of 10 seconds.

The client application is a simple Java-based object
viewer which can request and then display JPEG images.
The savepoint state provided by the source client during
handoff is small: a reference to the current object being
displayed, and a small amount (under 100 bytes) of addi-
tional state. The session state actually transferred to the
target client is typically much larger: the currently dis-
played object will be retrieved from a MWS cache during
handoff, content adapted as appropriate for the target
client, and then delivered to that client.

We conducted two minibrowser experiments. The first
compares the performance of an iMASH-enabled environ-
ment with the non-iMASH version of that system. The
second studies the performance of handoff across a range
of clients, handoff types, and object sizes.

4.2.1 non-iMASH vs iMASH performance

The utility of an iMASH-enabled client is determined
in part by the impact of the iMASH infrastructure on
“normal” activity: the user-visible performance of con-
ventional client-server interaction must be comparable in
both non-iMASH and iMASH-enabled environments.

To assess the impact of iMASH on normal activity,
we conducted experiments to measure the latency expe-
rienced by a client when requesting objects of varying
size from the server (using HTTP get operations). We
also varied the client device, to understand the impact
of heterogeneity. One experiment employed an iMASH
environment with application server, multiplexer, single
middleware server, and single client application and de-
vice. The second experiment (the non-iIMASH case) used
the same application server; the client application is an
iMASH-free version of the iMASH-enabled application.
In both experiments, identical sets of randomized object
requests were used, and identical client devices were used.

Figure 5 shows the results of this experiment. The

2000

iMash
without iMash -
1800 -

1600 -
1400 -
1200 -
1000 -

800 [

Time to Fetch Object (ms)

.
o 200 400 600 800 1000 1200
Size of the Object Fetched (KBytes)

Figure 5: Average client latency experienced on object request (Y-
axis), sorted by object size (X-axis), for iMASH and non-iMASH
environments.

Laptop to Laptop Laptop to PDA Modem to High Bandwidth
6 — -
E so00 3 £ 3000
o [000 = o 2500
E 2500 g £ 2000
¥ 4000 = = 1500 -
t 3000 = 1000 4
i ——] 500 +5
T © 9 o 9 9 © © © © 9o o T I © 0 o © 0o © © © o o o
83 28 8 38 2 8 38 8 8 8 83 28 8 38 2 8 38 8 8 8
2 &8 8B ¥ 88 R 88 8 2 &8 8B ¥ 88 R 88 8
Session State Size (KB) Session State Size (KB) Session State Size (KB)
PDA to Laptop PDA to PDA High Bandwidth to Modem
@ b @
£ E £ s000
o © @ 2500
E E £ 2000
5 ~ = 1500 1
3 3 :
= =] & = :
[} © 0 N O 0] 0
T o o o o T o 2 2o © 2 © © o © @ o T o 2 2 © 2 © © © © @ o
o =3 =3 b= =3 =3 =3 k=3 (=3 =3 o =3 =3 b= =3 =3 =3 k=3 (=3 =3 o =3 =3 b=
Session State Size (KB) Session State Size (KB) Session State Size (KB)

(2)

(b)

Figure 6: Client latency experienced on CASH (ms), as a function of session state size (KB). Note varying ranges on Y-axes. The upper
curve represents the total handoff latency. Each band below the curve represents successive phases of handoff, from bottom to top.

M state transfer from source client to middleware server
initializing a skeleton session on the target client

adapting the session state before delivery to the target

graph shows the average latency experienced by the ap-
plication when requesting an object of a particular size.
For brevity, we only show the “workstation” results. The
graph shows that the latency increases linearly with the
exception of a couple of outliers. The latency burden
is about 0.5s for smaller objects, and approached 1s for
larger object sizes. This baseline accounts for the addi-
tional costs of moving data up through a protocol stack
on the middleware server, into a Java application, and
back down through the stack to the client. The latency
beyond the baseline 0.5s is largely due to the over-the-
wire encryption incorporated by default by iMASH. We
conclude that the additional latency of iMASH is tolera-
ble even when no specific handoff benefits are exploited.

4.2.2 iMASH handoff performance

The purpose of this experiment is to determine the cost
of application session handoff in terms of latency visi-
ble to the client application and therefore, the user. We
also wish to understand the source(s) of such latency. In
this experiment, a minibrowser application session was
created and driven by an infinite loop over the 200 ob-
ject randomized workload described above. Against this
workload, a randomized series of handoffs was performed.

The graphs in Figure 6 summarize the results. They
show the wall-clock latency (Y-axis) experienced by the
application during handoff, with the session state primar-
ily composed of the most-recently requested object, whose
size is indicated. The data is separated by source and
target client device type: Figure 6(a) shows data from

[delivering the session state to the target client

execution resumption on the target client

handoffs involving a “full featured” laptop client and a
wireless PDA client; Figure 6(b) shows data from hand-
offs between a wired 100Mbps laptop client and a 56K
modem laptop client. Each data point is the alpha (=
0.10) mean of all occurrences of similar data.

The client device and network profiles for the PDA
client and 56K modem client reflect the (greater) con-
straints faced in comparison with a typical wired work-
station type of client. These constraints are sufficiently
significant to cause the middleware server to invoke con-
tent adaptation in each case prior to delivering data to
them; a small display size is the key profile constraint on
the PDA, while slow network transmission is the promi-
nent issue for the modem client.

Perhaps the most important observation is that handoff
incurs a latency ranging from 0.5 to 7 seconds, depend-
ing on state size and target device. At a more detailed
level, we see in these results that when the target requires
content adaptation, a latency proportional to the source
session state size is incurred. The time taken to deliver
the state to the target is proportional to the source state
size when no target constraints are in place, but when
adaptation is invoked, this component is constant rela-
tive to the specific constraint. We also see that the time
to resume execution is essentially a constant function of
the CPU type—because the PDA is executing the same
code as the laptops, it has a longer resumption delay.

From the same experiment that yielded the CASH re-
sults, we also extracted MASH results. They show that
for session state sizes under 400KB, a nearly constant

210ms of latency is incurred to transfer a session from
one MWS to another. For larger session sizes, a simple
linear regression yields a latency increase of about 13ms
per 100KB increase in state size—which closely matches
the expected transmission delay over the 100Mbps net-
work links employed in this experiment.

In Figure 7 we show corresponding FASH results. Be-
cause the effort involved in a FASH is somewhat similar
to performing both a CASH and MASH, we expect to
see slightly larger delays here—and, in fact, we see here
the same basic trends as in the CASH results above, not-
ing that in most cases a slight increase in the latency is
present. This increase is largely attributable to the delay
in copying session state from one MWS to another.

We conclude that the delays imposed by CASH, MASH,
and FASH are indeed acceptable: system-initiated hand-
offs (MASH) are well under a second, even for large ses-
sion states, and thus are unlikely to be noticed by users;
user-initiated handoffs are generally under two seconds.

Laptop to Laptop

Laptop to PDA

ize (KB) Session State Size (KB)

PDA to PDA

Session State Size (KB)

Session State Size (KB)

Modem to High Bandwidth High Bandwidth to Modem

3
£ 6000

oooooooooo

ession State Size (KB)

(b)

Figure 7: Client latency experienced on FASH, as a function of
session state size. The X-axes units are bytes, ranging from &~ 1KB
to & 1.3MB; the Y-axis units are milliseconds. The upper curve
represents total handoff latency.

4.3 Remote shell experiment

The Java Telnet Application, or JTA [JM] is a Java based
remote login client. The JTA emulates a VT320 terminal
and can be used to connect to either a telnet or an SSH
server. It was selected for integration within the iMASH
infrastructure primarily due to the usefulness of having
such an application with handoff capabilities, in addition

to the desire to test the iMASH architecture with an ap-
plication possessing substantial state. The JTA must save
approximately 100 individual pieces of state during hand-
off, which together often total 67KB. The largest single
piece of state is the window buffer; it contains the 100
most recent lines displayed on the terminal and can grow
in size to as much as 32KB. In addition to its significant
amount of state, the JTA itself is a relatively large appli-
cation, and has a source code base which exceeds 16,000
lines of code. Although this code already resides on the
target, it must be loaded by the JVM at invocation.

We employed the same autotester as used in the mini-
browser experiment, but with a workload appropriate to
a remote shell application: executing various commands
that generated varying amounts of “stdout” output, and
randomly performing handoffs. Figure 8 shows a his-
togram of the latency experienced on each handoff. Each
of the four types of handoffs were performed (randomly)
84 times; the frequencies are based on the aggregate to-
tal set of handoffs. The handoffs cluster as we expected,
with the laptop-to-laptop values showing the lowest la-
tency (u = 1.2s,0 = 0.26s); the pda-to-laptop values are
next quickest, with g = 3.9s,0 = 0.20s; the laptop-to-
pda values (u = 9.0s,0 = 0.17s) and pda-to-pda results
(1 = 10.6s,0 = 0.17s) show a distinctly longer latency.

This increased latency is dominated by the time it takes
to load and begin execution of the JTA application on the
PDA: while the startup cost on the laptop averages 0.48s,
on the PDA the average is 6.8s. If the PDA’s application
startup cost was more like the laptop, the user-visible
delay would be quite comparable. Recall that this appli-
cation was not “ported” to the PDA; the code was simply
loaded into its persistent storage and executed. We can
reasonably conjecture that a version of JTA tuned for
a PDA-class device would be much leaner and exhibit a
strikingly lower startup delay, and we therefore conclude
that heterogeneous application session handoff of complex
applications with extensive state and a large code base is
achievable while incurring modest delay.

4.4 Video player experiment

The previous experiments explored application session
handoff in the context of discrete data. This experi-
ment examines how well iMASH performs on streaming
data, since latency is critical to the user experience of
real-time streams. The overall system architecture (ap-
plication server, middleware server, client) is standard
iMASH. We developed a simple streaming server and
matching display application based on Sun’s Java Me-
dia Framework (JMF) [Sunb], and also incorporated JMF
into the content adaptation pipeline (CAP) component of
an RPC-based iMASH middleware server. JMF had the
benefits of being Java-based—as is our MWS—and it has

Histogram of CASH Latencies
[Java Telnet Application]

W laptop-laptop
M pda-laptop H
7.0% Olaptop-pda

Opda-pda

Frequency
> o

1.0% +

0.0 10 20 30 40 50 60 70 80
Handoff Time [sec]

9.0 100 110 120

Figure 8: Frequency histogram of client latency experienced on
client-only handoff (i.e., single MWS), for ~ 340 handoffs of JTA
application.

an extensive library of format transcoders suitable for a
range of output stream bandwidths. It also uses the Real-
Time Transport Protocol (RTP) [IET] as a delivery sub-
strate. A downside is that JMF is not designed to switch
transcoding methods on-the-fly, and so the CAP imple-
mentation must destroy and reconstruct a JMF instance
to change the transcoding in mid-stream.

In our first streaming data experiment, we assessed
the basic cost of switching transcoding methods, in the
absence of handoff. In this experiment, an external

Time decomposition

Time (milliseconds)

—_

1 6 11162126 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Iteration

\D Create_Transmitter_Timer B Format_Timer O Other\

Figure 9: Latency to switch video transcoding method

thread notified the CAP that a significant change in avail-
able MWS-to-client bandwidth had occurred, and a new
transcoding should be considered.!! The CAP selects an
appropriate transcoding method, kills the current JMF,
and restarts a new one. The graph in Figure 9 shows the
latencies experienced for a series of about 100 artificially-
induced transcoding format changes. The alpha (=0.05)

U Effective ways to learn at the middleware level of bandwidth
and other network QoS changes is the subject of ongoing research
in our lab.

mean is 694ms to switch transcodings, but substantial
unexpected variance clearly is visible in both the over-
all values (the entire vertical bar) and especially in the
“Format Timer” component—typically 2/3 of the total.

Closer study revealed that this component delay is
highly correlated with the transcoder selected: all of the
five transcoders used in the experiment showed much less
variance when grouped by transcoder type-but ranged
from a mean of 50ms for the cheapest method to a mean
of about 500ms for the most expensive. Sun’s documen-
tation for this portion of JMF (see [Sunal) indicates that
this step may be very time consuming, as JMF may need
to communicate with a server, read from a file, etc., in the
course of obtaining its required resources. The choice of
transcoder type (and perhaps implementation) is a dom-
inant factor in our results, with “nicer” delays around
200ms readily achievable.

Our second streaming data experiment measured the
cost to perform a CASH (client-only application session
handoff) on the video player application used above. In
this experiment, a user begins to play a video stream,
and then randomly performs a series of handoffs back
and forth between two clients. We measured the length
of the interval between the time when the MWS received
a message from the source client requesting handoff, and
the time when the MWS began producing a stream for
the target client. Note that with such applications, the
latency experienced by the user is heavily dependent on
size and content of the player’s input buffer, which is fre-
quently many seconds worth of data.[LGGB02].

The results of about 80 handoffs are shown in Fig-
ure 10. The mean delay is 1567ms, with a standard devi-

3000

\||‘H||‘Il|h||‘|

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Iteration

Handoff Times

N
a
o
o

Time (milliseconds)

\D Create_Transmitter_Timer B Format_Timer (0 Other

Figure 10: Streaming video handoff latency

ation of 587ms. Here again we see a noticeable variance,
much of which is attributable to the cost to create a new
transcoder object within JMF. Since the typical delay is
well under two seconds, we conclude from this experiment
that very fast heterogeneous application session handoff

of a streaming data application is feasible using iMASH.

5 Conclusions and Future Work

Mobile continuous computing in the medical domain has
been challenged to date by a lack of software support for
the inherent heterogeneity found there. iMASH fills the
gap in a significant way by exploiting application session
handoff, a novel legacy server unaware, client application
aware, secure approach to moving a computation across
heterogeneous platforms with very low latency.

The architecture presented in this paper has been
validated by experience with a number of prototype
legacy applications and middleware server implementa-
tions. Further proof of the iMASH concept is found in
experimental data obtained from implementations, which
shows that the user-visible latency incurred by applica-
tion session handoff is sufficiently low (typically, under
two seconds) to allow deployment of iMASH in the real
world—and enable the opening scenario to reach fruition.

The iMASH architecture supports streaming data, and
our “streaming CAP” rapid prototype is currently being
re-engineered for integration into our production middle-
ware implementation. Construction of a detailed simula-
tion model of iMASH is also underway. We expect the
model to validate early design decisions which had fore-
seeable scalability implications, and also anticipate in-
sight on unforeseen scalability opportunities.

Future work will look at several critical areas. It is
important that a deeper understanding of interaction
between layers be obtained, especially between wireless
(re)transmission and content adaptation at higher layers.
We also need to better understand (and perhaps loosen)
the layer boundaries between mobile IP and ASH: cross-
layer interaction may well be appropriate here.

The iMASH architecture, with multiple middleware
servers and multiple client devices, appears ripe for en-
hanced reliability and robustness. Extensive caching at
both MWS and client, coupled with mobility-inspired
handoff, should be exploitable for automatic fail-over in
response to either MWS or client failure.

Finally, client devices sometimes act as significant data
sources (essentially servers), such as when participating
in a video conference. The extent to which the iMASH
architecture can be inverted is worthy of further study.

References

[BGWO01] Nikita Borisov, Ian Goldberg, and David Wagner. In-
tercepting mobile communications: the insecurity of

802.11. In Proceedings of the MOBICOM, 2001.
Armando Fox, Steven D. Gribble, Eric A. Brewer, and
Elan Amir. Adapting to network and client variability
via on-demand dynamic distillation. In Proceedings of
the 7th ASPLOS. ACM, October 1996.

[FGBAY6]

[GDLBO02] Robert Grimm, Janet Davis, Eric Lemar, and Brian
Bershad. Migration for pervasive applications. Sub-
mitted for publication, 2002.

David Hellerstein. HIPAA and health information pri-
vacy rules: Almost there. Health Mgt. Tech., April 2000.

IETF. RTP: Real time protocol, RFC3267. ftp://ftp.rfc-
editor.org/in-notes/rfc3267.txt.

[Hel00]
[IET]

[IM] Matthias Jugel and Marcus Meissner. JTA, java tel-

net/SSH application. http://www.javassh.org.

[LGGBO02] Jinsong Lin, Glenn Glazer, Richard Guy, and Rajive
Bagrodia. Fast asynchronous streaming handoff. In Pro-

ceedings of the IDMS/PROMS 2002, 2002.

Wai Lum and Francis Lau. On balancing between
transcoding overhead and spatial consumption in con-
tent adaptation. In MOBICOM proceedings, 2002.

[LLO2a]

[LLO2b] Wai Yip Lum and Francis C.M. Lau. A context-aware
decision engine for content adaptation. IEEE Pervasive

Computing, pages 41-49, July 2002.

[MDO00] D. Milojicic and F. Douglis, et al. Process migration

survey. In ACM Computing Surveys, 2000.

[Nob97] Brian D. Noble, et al. Agile application-aware adapta-
tion for mobility. In Proceedings of the 16thSOSP, pages

276—287. ACM, October 1997.

Thomas Phan, Richard Guy, and Rajive Bagrodia. A
scalable, distributed middleware service architecture to
support mobile internet applications. In Proceedings of
the IEEE Workshop on Wireless Mobile Internet, 2001.

Thomas Phan, George Zorpas, and Rajive Bagrodia. An
extensible and scalable content adaptation pipeline ar-
chitecture to support heterogeneous clients. In Proceed-
ings of the 22nd ICDCS, 2002.

Manuel Romén, Fabio Kon, and Roy H. Camp-
bell. Reflective middleware: From your desk to
your hand. Distributed Systems Online, 2(5), 2001.
http://dsonline.computer.org.

[PGBO1]

[PZB02]

[RKCO1]

Alex C. Snoeren and Hari Balakrishnan. An end-to-end
approach to host mobility. In ACM/IEEE Int’l. Conf.
on Mobile Computing and Networking, August 2000.

[SBOO]

[SKP02] Erik Skow, Jiejun Kong, and Thomas Phan, et al. A
security architecture for application session handoff. In

Proceedings of the ICC, 2002.

Sun Microsystems. javax.media interface con-
troller. http://java.sun.com/products/java-media/
jmf/2.1.1/apidocs/javax/media/Controller.html.

[Suna]

[Sunb] Sun Microsystems. JMF: Java media framework.

http://java.sun.com/products/java-media/jmf/.

[VMCT95] Erik van Mulligen, Ronald Cornet, and Teun Timmers.
Problems with integrating legacy systems. In Annual
Symposium on Computer Applications in Medical Care

: Toward Cost-Effective Clinical Computing, 1995.

WAP Forum. Wireless transport layer security speci-
fication. wwwl.wapforum.org/tech/ documents/WAP-
261-WTLS-20010406-a.pdf.

Victor C. Zandy and Barton P. Miller. Reliable net-
work connections. In ACM/IEEE Int’l. Conf. on Mobile
Computing and Networking, 2002.

[WAP]

[ZM02]

